Higher Direct Images of Log Canonical Divisors and Positivity Theorems

نویسنده

  • OSAMU FUJINO
چکیده

In this paper, we investigate higher direct images of log canonical divisors. After we reformulate Koll ar's torsion-free theorem, we treat the relationship between higher direct images of log canonical divisors and the canonical extensions of Hodge ltration of gradedly polarized variations of mixed Hodge structures. As a corollary, we obtain a logarithmic version of Fujita-Kawamata's semi-positivity theorem. By this semi-positivity theorem, we generalize Kawamata's positivity theorem and apply it to the study of a log canonical bundle formula. The nal section is an appendix, which is a result of Morihiko Saito.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On direct images of pluricanonical bundles

We show that techniques inspired by Kollár and Viehweg’s study of weak positivity, combined with vanishing for log-canonical pairs, lead to new generation and vanishing results for direct images of pluricanonical bundles. We formulate the strongest such results as Fujita conjecture-type statements, which are then shown to govern a range of fundamental properties of direct images of pluricanonic...

متن کامل

Ample Divisors on M 0,a (with Applications to Log Mmp for M 0,n )

We introduce a new technique for proving positivity of certain divisor classes on M0,n and its weighted variants M0,A. Our methods give an unconditional description of the symmetric weighted spaces M0,A as log canonical models of M0,n.

متن کامل

The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7

Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...

متن کامل

Base Point Free Theorems —saturation, B-divisors, and Canonical Bundle Formula—

We reformulate the Kawamata-Shokurov base point free theorem by using the notion of b-divisors and saturation of linear systems, which was introduced by Shokurov. Combining the refined Kawamata-Shokurov base point free theorem with Ambro’s canonical bundle formula, we quickly reprove the main theorem of Kawamata’s paper: Pluricanonical systems on minimal algebraic varieties, without using the n...

متن کامل

Extension of log pluricanonical forms from subvarieties

In this paper, I prove a very general extension theorem for log pluricanonical systems. The strategy and the techniques used here are the same as [Ts3, Ts6, Ts7, Ts8]. The main application of this extension theorem is (together with Kawamata’s subadjunction theorem ([K5])) to give an optimal subadjunction theorem which relates the positivities of canonical bundle of the ambient projective manif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003